Identification

Title

Micromechanics of shear failure in a porous rock: a combined dataset of high-resolution time-resolved 3D x-ray micro-tomography volumes and local 3D strain fields with contemporaneous acoustic emissions and ultrasonic velocity survey waveforms

Abstract

This dataset shows both the micro-scale mechanisms and acoustic response involved in shear failure of a deforming porous rock. To our knowledge, this is the first such dataset to combine simultaneous acoustic measurements and x-ray tomography imaging. It comprises a time-series of 3D in-situ synchrotron x-ray microtomography (µCT) volumes showing a Clashach sandstone sample (CL10) undergoing triaxial deformation to failure under a constant acoustic emissions (AE) event rate. Use of a constant AE event rate slowed down the failure process after peak stress, enabling shear failure to be captured in unprecedented spatio-temporal detail by the µCT volumes. These volumes are accompanied by the local incremental 3D strain fields and simultaneously acquired waveforms from acoustic emissions and ultrasonic velocity surveys, as well as mechanical bulk stress and strain. These data are fully explained in Cartwright-Taylor et al. Seismic events miss important grain-scale mechanisms governed by kinematics during shear failure of porous rock, in review at Nature Communications. We also include an equivalent time-series of the same data types showing a second Clashach sandstone sample (CL04) undergoing triaxial deformation to failure, this time under a constant strain rate where failure happened abruptly, shortly after peak stress. Both collections were acquired in-situ on the beamline I12-JEEP at the Diamond Light Source, Didcot, UK, in September 2019. Each 3D µCT volume of the sample is contained in a .zip file labelled with the sequential scan number. Each volume comprises reconstructed 16-bit grey-scale data in a sequence of 2D image files (.tif), each numbered according to the depth at which it lies within the sample volume. The file dimensions are pixels, with an edge length of 7.91 µm. Two further .zip files contain the incremental 3D volumetric and deviatoric strain fields, obtained from digital volume correlation between neighbouring µCT volumes. Each strain field consists of a 32-bit 3D image file (.tif) in pixels with an edge length of 316.4 µm, labelled with its scan increment. Also included are (i) .csv files, containing the mechanical stress and strain time-series, the time and mechanical data at which each µCT volume was scanned, and the acoustic emissions event rate data, and (ii) .zip files containing times and waveforms for the acoustic emissions and ultrasonic velocity surveys as .ascii files. The .zip and .xlsx files are labelled with the sample name, the data type (grey-scale, strain-volumetric, strain-deviatoric, seismic, mechanical, mechCT, eventrateAE) and the sequential scan number (grey-scale only) according to the following convention: sample_datatype_scan#. We acknowledge Diamond Light Source for time on beamline I12-JEEP under proposal MG22517. This work is supported by the UK's Natural Environment Research Council (NERC) through the CATFAIL project NE/R001693/1 Catastrophic failure: what controls precursory localisation in rocks?

Resource type

nonGeographicDataset

Resource locator

https://webapps.bgs.ac.uk/services/ngdc/accessions/index.html#item173296

name: Data

function: download

https://doi.org/10.5285/56c7802c-93db-4f0f-8b89-e18e10215633

name: Digital Object Identifier (DOI)

function: information

https://doi.org/10.1038/s41467-022-33855-z

name: Published Paper

function: information

Unique resource identifier

code

http://data.bgs.ac.uk/id/dataHolding/13607932

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

originating controlled vocabulary

title

GEMET - INSPIRE themes

reference date

date type

publication

effective date

2008-06-01

Keyword set

keyword value

Sandstone

Rock deformation

Faulting

Compression tests

Acoustic emission

originating controlled vocabulary

title

BGS Thesaurus of Geosciences

reference date

date type

revision

effective date

2011

Keyword set

keyword value

NERC_DDC

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

2019-09-11

End position

2019-09-16

Dataset reference date

date type

creation

effective date

2022-04-22

Frequency of update

notApplicable

Quality and validity

Lineage

The samples underwent triaxial deformation at 25 MPa confining pressure and 5 MPa pore pressure in Stór Mjölnir, our x-ray transparent rock deformation rig with integrated acoustic monitoring (Cartwright-Taylor et al., in prep.). The samples were both loaded initially at a constant strain rate of 10⁻⁵ s⁻¹. CL04 continued to be loaded at a constant strain rate of 10⁻⁵ s⁻¹ until it experienced abrupt shear failure. CL10 was loaded in this way until detection of sufficient acoustic emissions to maintain a constant AE event rate of 1 AE s⁻¹, whereupon the sample experienced yield and slow shear failure. In each case, tomographic volumes of the whole sample, comprising overlapping scans of the top and bottom, were acquired every 85 s. At each end of the sample 0.3 mm was not captured due to limits on the x-ray field of view .

Conformity

Conformity report

specification

title

INSPIRE Implementing rules laying down technical arrangements for the interoperability and harmonisation of Geology

reference date

date type

publication

effective date

2011

degree

false

explanation

See the referenced specification

Conformity report

specification

title

Commission Regulation (EU) No 1089/2010 of 23 November 2010 implementing Directive 2007/2/EC of the European Parliament and of the Council as regards interoperability of spatial data sets and services

reference date

date type

publication

effective date

2010-12-08

degree

false

explanation

See http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:323:0011:0102:EN:PDF

Data format

name of format

image (TIF)

version of format

Constraints related to access and use

Constraint set

Limitations on public access

Constraint set

Limitations on public access

The copyright of materials derived from the British Geological Survey's work is vested in the Natural Environment Research Council [NERC]. No part of this work may be reproduced or transmitted in any form or by any means, or stored in a retrieval system of any nature, without the prior permission of the copyright holder, via the BGS Intellectual Property Rights Manager. Use by customers of information provided by the BGS, is at the customer's own risk. In view of the disparate sources of information at BGS's disposal, including such material donated to BGS, that BGS accepts in good faith as being accurate, the Natural Environment Research Council (NERC) gives no warranty, expressed or implied, as to the quality or accuracy of the information supplied, or to the information's suitability for any use. NERC/BGS accepts no liability whatever in respect of loss, damage, injury or other occurence however caused.

Responsible organisations

Responsible party

contact position

School of Geosciences

organisation name

University of Edinburgh

full postal address

Grant Institute, The King's Buildings, James Hutton Road

Edinburgh

EH9 3FE

email address

not available

responsible party role

originator

Responsible party

contact position

School of Geosciences

organisation name

University of Edinburgh

full postal address

Grant Institute, The King's Buildings, James Hutton Road

Edinburgh

EH9 3FE

email address

not available

responsible party role

principalInvestigator

Responsible party

contact position

School of GeoSciences

organisation name

University of Edinburgh

full postal address

Grant Institute, The King's Buildings, James Hutton Road

Edinburgh

EH9 3FE

email address

alexis.cartwright-taylor@ed.ac.uk

responsible party role

originator

Responsible party

contact position

School of Geosciences

organisation name

University of Edinburgh

full postal address

Grant Institute, The King's Buildings, James Hutton Road

Edinburgh

EH9 3FE

email address

not available

responsible party role

originator

Responsible party

contact position

School of GeoSciences

organisation name

University of Edinburgh

full postal address

Grant Institute, The King's Buildings, James Hutton Road

Edinburgh

EH9 3FE

email address

not available

responsible party role

originator

Responsible party

organisation name

Edinburgh Hacklab

email address

not available

responsible party role

originator

Responsible party

organisation name

École Polytechnique Fédérale de Lausanne

email address

not available

responsible party role

originator

Responsible party

organisation name

University of Edinburgh

email address

not available

responsible party role

originator

Responsible party

organisation name

University of Edinburgh

email address

not available

responsible party role

originator

Responsible party

organisation name

University of Edinburgh

email address

not available

responsible party role

originator

Responsible party

organisation name

University of Edinburgh

email address

not available

responsible party role

originator

Responsible party

organisation name

Diamond Light Source

email address

not available

responsible party role

originator

Responsible party

organisation name

British Geological Survey

email address

not available

responsible party role

distributor

Responsible party

organisation name

British Geological Survey

email address

not available

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

organisation name

British Geological Survey

full postal address

Environmental Science Centre,Keyworth

NOTTINGHAM

NG12 5GG

United Kingdom

telephone number

+44 115 936 3100

email address

enquiries@bgs.ac.uk

responsible party role

pointOfContact

Metadata date

2023-05-24

Metadata language

eng