Identification

Title

Melting in the Deep Earth (NERC grants NE/I010734/1 and NE/I010947/1)

Abstract

Published paper from grant NE/I010734/1, Modeling the melting of multicomponent systems: the case of MgSiO3 perovskite under lower mantle conditions by Cono Di Paola and John P. Brodholt doi: 10.1038%2Fsrep29830 Two published papers from NERC grant NE/I010947/; Thomson et al AmMin 2014 Experimental Determination of Melting in the systems Enstatite-Magnesite and Magnesite-Calcite from 15 to 80 GPa http://dx.doi.org/10.2138/am.2014.4735 Lord et al EPSL 2014 The Melting Curve of Ni to 1 Mbar http://dx.doi.org/10.1016/j.epsl.2014.09.046 Grant Abstract: Melting in the Earth has a huge effect on its chemical and physical state. For instance, the chemistry of the crust, the mantle and the atmosphere are largely controlled by melting and crystalisation at mid-ocean ridges, hotspots or island arcs. There has, therefore, been an enormous effort in the last decades to understand these shallow melting processes. Yet much deeper melts may have been equally influential in the evolution of the Earth. For instance, it is generally accepted that a deep magma ocean perhaps extending to the Earth's centre, existed early its history. This was the result of multiple impacts as the Earth accreted. From this magma ocean, iron melts separated from silicate melts to form the core, volatiles degassed to form an early atmosphere, and a proto-crust may have formed. It is also accepted that the Earth was hit by a Mars-sized body to create the moon; this too would have caused enormous amounts of melting in the deep Earth. Moreover, there is some evidence for melting in the deep Earth now. It is possible, therefore, that melts in the deepest Earth have existed throughout Earth's history. However, many basic data on the physical and chemical properties of deep melting do not exist. For instance, we don't know the melting curves for mantle minerals and rocks at the pressure and temperatures of the deep Earth. We don't know which minerals crystalise from these melts first (the liquidus phases). We don't know the composition of partial melts of deep mantle rocks or rocks which have been subducted. We don't know the relative densities of the rocks and their melts, and so we do not even know whether minerals float of sink in these deep melts. This lack of data has led to much speculation on the effect of deep melts on the Earth's evolution. For instance, it has been suggested that geophysical and geochemical anomalies in the Earth's mantle have deep early melts as their origin. But these models depend of the chemical and physical properties of the melts and crystalline solids, properties that are simply not known. This project will use novel experiments in conjunction with ab initio modelling obtain these data. The data will provide the chemical and physical foundation on which all future models of the Earths early crystallization and subsequent evolution will be based.

Resource type

nonGeographicDataset

Resource locator

http://dx.doi.org/10.1016/j.epsl.2014.09.046

function: download

http://dx.doi.org/10.2138/am.2014.4735

function: download

https://dx.doi.org/10.1038%2Fsrep29830

function: download

http://www.bgs.ac.uk/services/ngdc/accessions/index.html#item72909

function: download

http://www.bgs.ac.uk/services/ngdc/accessions/index.html#item72029

function: download

Unique resource identifier

code

http://data.bgs.ac.uk/id/dataHolding/13607077

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Additional information source

NERC split award, lead grant NE/I010734/1, associated grant NE/I010947/1)

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

originating controlled vocabulary

title

GEMET - INSPIRE themes

reference date

date type

publication

effective date

2008-06-01

Keyword set

keyword value

Melting points

Nickel

originating controlled vocabulary

title

BGS Thesaurus of Geosciences

reference date

date type

revision

effective date

2011

Keyword set

keyword value

NERC_DDC

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

2014-12

Dataset reference date

date type

publication

effective date

2014-12

Frequency of update

notApplicable

Quality and validity

Lineage

Published papers may contain lineage information.

Conformity

Conformity report

specification

title

INSPIRE Implementing rules laying down technical arrangements for the interoperability and harmonisation of Geology

reference date

date type

publication

effective date

2011

degree

false

explanation

See the referenced specification

Conformity report

specification

title

Commission Regulation (EU) No 1089/2010 of 23 November 2010 implementing Directive 2007/2/EC of the European Parliament and of the Council as regards interoperability of spatial data sets and services

reference date

date type

publication

effective date

2010-12-08

degree

false

explanation

See http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:323:0011:0102:EN:PDF

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Limitations on public access

Constraint set

Limitations on public access

The copyright of materials derived from the British Geological Survey's work is vested in the Natural Environment Research Council [NERC]. No part of this work may be reproduced or transmitted in any form or by any means, or stored in a retrieval system of any nature, without the prior permission of the copyright holder, via the BGS Intellectual Property Rights Manager. Use by customers of information provided by the BGS, is at the customer's own risk. In view of the disparate sources of information at BGS's disposal, including such material donated to BGS, that BGS accepts in good faith as being accurate, the Natural Environment Research Council (NERC) gives no warranty, expressed or implied, as to the quality or accuracy of the information supplied, or to the information's suitability for any use. NERC/BGS accepts no liability whatever in respect of loss, damage, injury or other occurence however caused.

Responsible organisations

Responsible party

contact position

School of Earth Sciences

organisation name

University of Bristol

full postal address

Wills Memorial Building, Queens Road, Clifton

Bristol

BS8 1RJ

email address

not available

responsible party role

pointOfContact

Responsible party

contact position

Department of Earth Sciences

organisation name

University College London

full postal address

Gower Street

London

WC1E 6BT

email address

not available

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

organisation name

British Geological Survey

full postal address

Environmental Science Centre,Keyworth

NOTTINGHAM

NG12 5GG

United Kingdom

telephone number

+44 115 936 3100

email address

enquiries@bgs.ac.uk

responsible party role

pointOfContact

Metadata date

2023-05-24

Metadata language

eng